
UCRL-PROC-208557

A Progressive Subdivision
Paradigm (PSP)

R. Borgo, R. Scopigno, P. Cignoni, V. Pascucci

December 13, 2004

IS&T/SPIE's International Symposium on Electronic Imaging -
Visualization and Data Analysis
San Jose, CA, United States
January 18, 2004 through January 22, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

A Progressive Subdivision Paradigm (PSP)

R. Borgo,1 R. Scopigno,1 P. Cignoni,1 and V. Pascucci,2
1 Visual Computing Group, Consiglio Nazionale delle Ricerche

2 Center for Applied Scientific Computing Lawrence Livermore National Laboratory

Abstract

The increasing rate of growth in size of currently
available datasets is a well known issue. The
possibility of developing fast and easy to imple-
ment frameworks able to visualize at least part of
a tera-sized volume is a challenging task. Subdi-
vision methods in recent years have been one of
the most successful techniques applied to the multi-
resolution representation and visualization of sur-
face meshes. Extensions of these techniques to the
volumetric case presents positive effects and major
challenges mainly concerning the generalization of
the combinatorial structure of the refinement pro-
cedure and the analysis of the smoothness of the
limit mesh. In this paper we address mainly the first
part of the problem, presenting a framework that ex-
ploits a subdivision scheme suitable for extension to
3D and higher dimensional meshes.

1 Introduction

Modern scanning devices, modelling systems and
computer simulations give rise to surface and vol-
ume of ever increasing resolution. Real-time dis-
play and transmission of this sheer amount of data
is a challenging task requiring to generate approxi-
mations of minimal size with respect to given error
bounds. To address these issues new data-streaming
techniques have been proposed mainly concerning
progressive processing and visualization. In this pa-
per we present a new approach that combines the
flexibility of a progressive multi-resolution repre-
sentation with the advantage of a recursive subdi-
vision scheme. The main contributions of the pa-
per are: (a) a progressive algorithm that builds a
multi-resolution surface by successive refinements
so that a consistent representation of the output is
always available (b) a multi-resolution represen-
tation where any adaptively selected level of de-
tail is guaranteed to be consistently embedded in

3D space (no self-intersections), (c) a regular hi-
erarchy that allows the creation of a good data-
partitioning scheme to balance processing time and
data migration time. We restrict our attention to
the case of meshes computed as isocontours of 3D
scalar fields. Our approach right now focuses on
the case where the multi-resolution representation
of the volumetric data is based on the edge bisec-
tion refinement rule widely used in mesh genera-
tion [10, 11]. For rectilinear volumetric input such
a subdivision correspond to an adaptive hierarchical
approximation. We select a set of cells intersecting
the isocontour value and organize them in a sort of
tree like structure where each level correspond to
a different level of refinement of the isocountour,
each node corresponds to an atomic cell, cells that
can be grouped together in arbitrarily dimensioned
bunches and sent to multiple processors to be elabo-
rated. The final result becomes then a compositing,
through graphics library that operates in distributed
environments like WireGL, of the contribution of
each bunch of cells coming from each one of the
processors. In the next paragraph we analyze de-
tails and results of the developed paradigm.

2 Previous Work

In the course of the paper we will refer mainly at
isocontour extraction and visualization in very large
dataset. For reason of space we need to abbreviate
the section related to the state of the art of isosur-
face extraction techniques leaving the reader to re-
fer to the Bibliography for a more detailed analy-
sis. A very rich literature in isosurface extraction
exists as isosurfaces are an effective technique to
analyze 3D scalar fields generated from large-scale
numerical simulations. Three main classes of al-
gorithms used to perform such a task can be iden-
tified. The first one groups all those methods that
overworked and improved the well known March-

VMV 2003 Munich, Germany, November 19–21, 2003

 (a) (e) (d) (c) (b)

 (a’) (b’) (c’) (d’) (e’)

Figure 1: 4-8 recursive subdivision. (a-e) Classical longest edge
bisection of a rectilinear grid. (a’-e’) Equivalent

�
2 subdivision

where pairs of adjacent triangles are merged into one square.

ing Cubes algorithm [6]; examples of accelerat-
ing techniques included the use of hierarchical data
structures like octrees [14] and value decomposition
methods [12, 5]. A second class of isosurface ren-
dering algorithms refers to techniques that resem-
bles the contour propagation algorithms [7]; these
type of algorithms identify a seed cell from which
to begin the propagation, they end up with a sort of
seed set covering the isovalue range. The third class
groups those algorithms that mainly focus on the re-
duction of the number of triangles generated during
the isosurface extraction; belongs to this class the
algorithm proposed by Livnat and Hansen [4]. The
approach we focus on belongs to the class of Sub-
division Surfaces. First introduced by Pascucci [9],
has been further developed by Gregorski et al.[2].
While borrowing the basic refinement schema from
Pascucci [9] our approach differs from Gregorski
et al. [2] in one main aspect: to support refine-
ment and derefinement of the mesh Gregorski [2]
need to keep a data structure of two queues (merge
and split) whose accesses must be guaranteed to be
atomic (for consistency of the data). Our algorithm
instead is based on an implicit coarse to fine refine-
ment scheme that does not need to keep any extra
data structure (except the one used to support ver-
tex inheritance, sec. 5.2, used to improve isosurface
extraction but not essential to the refinement algo-
rithm itself) we can also just make use of the double
buffer to perform refinement and rendering. More-
over characteristic of the approach adopted is to re-
spond well to three big issues typical of multireso-
lution approaches: vertex proliferation (mainly de-
pendent on the subdivision mask adopted), efficient
extraction of the refined surface, rendering in time-
critical environment. Typical of tensor product re-
finement schemes, that normally increase the num-
ber of vertices by a factor of 8, vertex proliferation
is an important issues especially when dealing with

datasets of large size (see [3], [13]). For what con-
cerns this issue our refinement scheme roughly dou-
bles the number of vertices independently of the in-
trinsic dimension of the input mesh. For what con-
cerns the capability of rendering in time-critical en-
vironment, a consistent representation of the output
is always available as long as a coarse representa-
tion of the input is given. For Efficient Isocontour-
ing, the hierarchy is built only with cells intersect-
ing the isocontour: no empty regions are visited,
each level of the hierarchy correspond to a uniform
level of resolution of the mesh, the hierarchy can
be traversed to perform adaptive refinement of the
input mesh. The following section describes the
mathematical rules at the base of our refinement al-
gorithm.

3 Subdivision Scheme Description

The refinement scheme at the base of our frame-
work has been introduced by Pascucci in [9]. It
follows the edge-bisection refinement introduced
in [11], and proposed under a different approach
in [13], known as 4-8 subdivision or

�
2 subdivi-

sion. The techniques in these papers focus primar-
ily on the case of surface subdivision and not the
volumetric case. Figures 1 (a-e) show the subdivi-
sion scheme for a rectilinear grid, Figures 1(a’-e’)
show the subdivision strategy applied to quadrilat-
eral elements. Each refinement is performed insert-
ing a point at the center of each square/rhombus and
splitting the diamond into four triangles. Each pair
of triangles adjacent along an old edge are merged
into a new square/rhombus. In the next section we
show how this procedures can be generalized to the
volumetric case. We propose the edge-bisection re-
finement scheme from a new point of view based on
a set of simple rules that characterize consistently
the decomposition of a grid in simplices together
with the recursive refinement of the derived simpli-
cial mesh. The result is a new naming scheme that
allows to represent an adaptive simplicial mesh with
a very low memory footprint.

4 3D Subdivision Scheme

As proposed by Pascucci in [9] we organize the sub-
division process into levels and tiers. Each level l
has four tiers, form 0 to 3, where tier 3 of level l is
coincident with tier 0 of level l�1. In our scheme

666

(b)

Ff

(a)

c1 c2

p1 p2

Figure 2: 3D cell refinement from tier 0 tier 1. (a)The two cells
c1 and c2 in tier 0 . Their centers p1 and p2 are marked with two
crosses. Their adjacency facet f is highlighted in gray. (b) The
cell F of tier 1 (in gray) is the union of the pyramids p1� f and
p2� f .

each refinement is a transition from tier i to i�1. At
tier 3 the level is increased by one and the tier is re-
set to 0. We denote cells, facets, edges and vertices
of the generated grid with the symbols ci� fi�vi.

4.1 Subdivision Rules

In this section we analyze the geometrical aspect
of our subdivision scheme. The terms used (like
“centers” and “diamonds”) are to be considered in a
combinatorial fashion, given more to provide an in-
tuitive idea of the described structure than referring
to their actual geometrical meaning.

From tier 0 to tier 1. For each cell ci in the input
mesh its center pi is selected. The cell ci having
n facets is decomposed into n pyramidal cells by
connecting the center pi with all its facets. Let’s
denote by p� f the pyramid built by connecting p
with a facet f . For each pair of cells ci�c j, adjacent
along a facet f , a new cell F is created by merging
the pyramid pi� f with the pyramid pj � f (see
Fig. 2):

F � �pi� f �� �p j� f �� with f � ci� c j�

From tier 1 to tier 2. Consider a cell F of tier 1
and its center q. Let gi be the facets of F that do not
belong to tier 0 (for non-sharp F all the facets are of
tier 1). We decompose F into a set of pyramids each
given by q�gi. If F is a sharp cell, its center qk is
coincident with the center of its facet f of tier 0.
In this way we handle directly boundary cases and
2-dimensional sharp features. Each pyramid q�gi
contains exactly one edge ej of tier 0. After each
tier 1 cell is split all the pyramids incident to the
same edge e are merged into a cell E. All the cells
built in this way form the mesh of tier 2. Figure 3
shows the construction of one cell of tier 2. The
coarse mesh has four cells all incident onto an edge

e (Figure 3a). Four cells of tier 1 are built by merg-
ing pairs face pyramids (Figure 3b). Each tier 1 cell
is then decomposed into four pyramids, of which we
select only two incident to e (Figure 3c). The eight
pyramids selected (two per cell) are finally merged
into one cell E of tier 2, (Figure 3d).

From tier 2 to tier 3. As in the previous two steps
one determines the center r of any cell E. Each cell
E is then partitioned by joining r with each facet
of E. As usual, for sharp cells the point r should be
considered as the center of e and is shared among all
the cells around e. The last merging step is among
cells that are incident both to a vertex v and a cell
center p. During this last merge step all the spurious
edges introduced during the refinement procedure
are removed. Figure 4 shows the construction of
one cell of tier 3 from a cell of tier 2.

4.2 Refinement Characterization

Cells generated by our subdivision technique can be
easily characterized. A diamond is a cell that can be
combinatorially partitioned into a set of simplices
all sharing an edge. All the cells generated by our
scheme are diamonds (for reason of space we re-
fer to [9] for the proof of what just stated). The
first interesting aspect of this subdivision scheme,
is that given a mesh representation model it can
be organized hierarchically in terms of embedded
diamond-entities. By construction, the topology of
such hierarchy is implicit to the diamonds them-
selves: each cell/diamond is a unique and indepen-
dent nucleus that stores in itself all the informa-
tion needed. From a diamond center, characterized
by three index �i� j�k�, it is possible to derive tier,
type, orientation and refinement level it represents.
Through simple mathematical rules it is possible to
identify diamond sons. The overall mesh is in fact
seen as a collection of geometric primitives (the di-
amonds) that for the regularity of the subdivision
criteria need a very low footprint to be represented.
Every point of the mesh can be reached following
our subdivision scheme. Traversals of the mesh by
means of our diamond hierarchy allows the extrac-
tion of all the mesh related information: mesh data,
range and approximation error. Another point worth
noting is that diamonds as entities do not really ex-
ists, only their centers exists. A center can be used
as key to derive diamond shape (that is type and ori-

666

c1

c4 c5

c2

f1
f4

f3f2
F3

F2

F1

F4

(a) (b) (c) (d)

Figure 3: Cell refinement from tier 1 to tier 2. (a) Four cells c1�c2�c3 and c4 of tier 0 share, in pairs, the facets f1� f2 � f3 and f4. The
edge e is shared by all facets f1� f2 � f3 and f4. (b) Each facet fi generates a cell Fi . (c) Each cell Fi is decomposed into four pyramids only
two of which are selected. The selected pyramids are those containing the edge e. (c) All the pyramids containing e are merged together
to form the cell E of tier 2.

entation) and vertexes position with just a couple of
unitary operations. The regularity of the diamond
shape allows in fact to gather the diamond vertexes
simply adding a δ constant to the center coordinates
(diamond vertexes are needed only for sons gener-
ation). In case of regular grids the constant is fixed
for each type of diamond and dependent in magni-
tude to the level of refinement reached. Overwork-
ing these properties we have developed a Progres-
sive Subdivision Paradigm (PSP) oriented to the vi-
sualization of large datasets. The following section
describes the implementation details of our PSP al-
gorithm and data-structures. We have focused our
initial efforts on the refinement of regular grids nev-
ertheless the framework has been designed to be in-
dependent of the kind of input mesh.

5 PSP Framework

The Progressive Subdivision Paradigm (PSP)
framework corresponds to a level-of-detail approx-
imation of a regular data volume. Each level con-
sists of a set of uniformly represented diamond-
entities generated through recursive subdivision of
the volume and fusion of adjacent items following a
merging “diamond-generation” schema. Any kind
of traversal of the multiresolution framework gen-
erates an approximation of the object volume cor-
responding to an error-based simplification of the
volume itself. The simplification may respond to
view-dependent and adaptive constraint and allow
for speeding up the rendering process of the volume

data. qOur multiresolution framework can be seen
as a two phases process: a pre-processing phase
where some auxiliary information (data, range, ap-
proximation error) are extracted, and a rendering
phase where the mesh is traversed, at run-time,
to extract the model under appropriate constraints
(view-dependent, adaptiveness, error-based crite-
ria). In the present context the pre-processing phase
comprehend volume subdivision for extraction of
all the data and their organization in tables. The
rendering phase consists instead of traversal of the
mesh and isocontour extraction following appro-
priate approximation criteria. Input of the frame-
work is a regular volumetric dataset extended when
needed to even dimension i.e. �2N�1���2N �1��
�2N �1�.

5.1 Pre-Processing Phase

The pre-processing phase correspond to a formal-
ization of the dataset with our subdivision schema.
Initially the volume is subdivided through a per-
vertex adding process. The initial step consists of
the subdivision of the bounding volume introducing
the vertex corresponding to the center of the bound-
ing box itself, each successive step picks up new
vertexes from the original volume and adds them
continuing the subdivision process until all vertices
are added. Vertexes are added at each step fol-
lowing a breadth first priority (BFP) policy: the
same subdivision step is implemented for all the
diamonds in the same level before the next step is
taken. Through the subdivision process we extract

666

Figure 4: Cell refinement from tier 2 to tier 3.

the data embedded in the volume and calculate the
range belonging to each diamond (with range we
identify the min and max field values contained in
a diamond). In a successive step we traverse the
volume in depth first order to compute the approx-
imation error belonging to each diamond . These
results are organized in tables as described in the
following paragraph.

5.1.1 Data Organization

In the implementation of our framework we have
decided to organize all of the information inferable
from the mesh representation model in tables. We
end up with three main tables: data, range and field.
Each table has dimension equal to the dimension of
the volume, and with access key equal to a function
of the �i� j�k� indexes of each diamond center. Fill-
ing of data and range tables can be done during the
volume subdivision, a simple min/max routine as-
sures the nesting of the min/max ranges. Because
volume subdivision is performed following a BFP
policy, the complexity of the filling step is equal to
the complexity of a breadth first visit of a tree, that
is linear in the number of cells/nodes. Therefore at
subdivision step l� 1 we need to have in memory
only the diamonds belonging to level l, those dia-
monds are discarded as soon as level l� 1 is com-
pleted. Computing the approximation error is more
complex. An explicit representation of the hierar-
chy is needed to compute the error accuracy. The
error metric we adopt assures an overestimation of
the error introduced by the approximation but re-
quires to be able to move easily in the hierarchy;
because, by construction, diamonds share sons (i.e.
a diamond of level l�1 is generated by the fusion of
parts of diamonds of level l), computing father/son
relation is not straightforward, though possible. We
have decided to give easiness of implementation top
priority, at least for now, for this reason only during
error calculation the hierarchy organization is made
explicit with a tree like data-structure. It consists

of a Diamond Tree (DT) where each diamond of
the same type and resolution shares level with its
diamond siblings. Each node of the diamond tree
stores only the indexes of the diamond center and
pointers to its sons. A depth first traversal of DT
allows for the calculation of the error. Results are
stored in a table with the same characteristics as the
data and range tables.

5.2 Rendering Phase

Extraction and refinement of the isosurface are exe-
cuted at runtime performing traversals of the mesh
representation model. Starting from the center of
the bounding box of the model we proceed follow-
ing our subdivision rules. The mesh can be tra-
versed following a breadth first policy, to obtain a
rough but homogeneous approximation of the orig-
inal dataset, or a depth first policy allowing for se-
lective refinement of the original dataset. Only cells
intersecting the isosurface are visited and eventu-
ally refined. Isosurface extraction is performed dur-
ing the traversal. Refinement of a diamond is de-
cided in function of error metrics. The isosurface is
extracted even if further refinement is needed, this
allows us to maintain always a consistent version
of the model available and to render at any given
time partial results while the computation makes
progress.

5.2.1 Isosurface Extraction

To perform the extraction we subdivide each di-
amond cell, belonging to the level of refinement
required, into tetrahedra. In this way we have a
piecewise linear representation of the scalar field
F �x� necessary to compute an isocontour using the
marching tetrahedra algorithm. Each isocontour is
updated within a single tetrahedron and then com-
posed to update the global isosurface within the set
T of all tetrahedra around the bisection edge. As
the edge-bisection algorithm makes progress new

666

function values are added and a more detailed defi-
nition of the function is obtained.

Isosurface Extraction: Inheritance. The recur-
sive subdivision produces, by construction, a set of
“partially” embedded diamonds, partially because
only a portion of a diamond is embedded in each
of its fathers and a diamond embeds only a portion
of each of its children. This special embedding al-
lows for each diamond to share with its fathers and
sons part of the isocontour it intersects. To exploit
this property we have decided to try to support the
inheritance of shared vertexes between diamonds.
Because there is no explicit representation of the
hierarchy produced by the subdivision process (as
mentioned in Sect 4.2 the topology of the refine-
ment hierarchy is implicit to the cells) to support
vertex inheritance we need to locally explicit the hi-
erarchy for one level of refinement: the one of just
refined diamond (i.e. diamonds belonging to refine-
ment level l), and the one of diamonds generated by
the refinement (i.e. diamonds belonging to refine-
ment level l�1). The two hierarchy levels are orga-
nized in a two-level data-structure (HT). Each node
in HT stores diamond center and computed isover-
texes at level l . The HT structure is used only at
runtime. Supporting inheritance has gains and loss,
loss in terms of memory overhead, gains in terms of
speeding up of the rendering process avoiding use-
less calculations. Advantages and disadvantages of
this choice are analyzed in sections 5.2.3 and 6.

5.2.2 Error Metrics

To measure the error introduced by approximating
the rendered model with low resolution level of
details we adopt two different error metrics: field
space error [1] �δ� and screen space error �ρ�. Our
field space error measure is an overestimation of the
field space error computed between successive lev-
els of refinement. The field space error is computed
traversing the hierarchy DT from bottom to top in
the pre-processing phase. The error of a diamond is
the maximum between its internal error and the er-
ror of its sons, this guarantees a correct propagation
of the object space errors during pre-processing.
View-dependent algorithms projects object space
errors onto the screen generating a screen space er-
ror ρ�δ�. Screen space error is simply a factor that
amplifies the object space error. It can be computed
in function of the distance along the view direction

14

15

18
19

23
11

10

6

2

6

11
1918

10
14

15

23

2

9

4

8

0

21

17

13

12

16

4

21

9 13

0

12

16

17
8

v0

v6 v6

v0

Figure 5: Isovertex inheritance for a tier1 diamond from its two
tier0 diamond fathers. The diamond inherits exactly 12 vertexes, 8
from each father but 4 in common on the shared face.

of the objects from the point of view. The most sim-
ple metric of this form can be written as:

ρi � λ
δi

�pi� e� (1)

The projected error decreases with the distance
from the viewpoint. In computing our screen space
error we follow the approach adopted by Lindstrom
and Pascucci in [8]. We compute the bounding
sphere Bi of ray ri of each diamond di and consider
active all the cells inside Bi that satisfy pre-defined
constraints.

5.2.3 Memory Occupancy and Overheads

In our strategy we have decided to store all the mesh
related information in tables. We have three main
table: data (IT), field value range(MT) and error
(ET). Each of them has size equal to the size of the
mesh grid. Tables requires storage and computa-
tional time for filling. Because table filling is one of
the heaviest operations we perform, for this reason
it is restricted to the phase of pre-processing. Field
values and errors are data that needs to be stored be-
sides any type of implementation. Range is an in-
formation needed to be able to perform efficient iso-
contouring and, especially when dealing with large
meshes, the possibility of discarding cells, not inter-
secting the isocontour, means computational time
saved during mesh traversal. Moreover the regular-
ity of the structures in which those data are stored
and the methods used for accessing the data makes
them suitable for partitioning and distribution on
the type of resources available. Part of the mem-
ory is occupied also by the Diamond Tree that we

666

need to create for computing the error approxima-
tion. This structure is used only during the pre-
processing phase, never at run-time, and after the
error calculation is completed it can be discarded.
Two main points are worth noting: necessity and
complexity of introducing this data structure. The
diamond tree is actually needed because of the er-
ror metric adopted (Sect 5.2.2) that requires to eas-
ily move from bottom levels to top levels of the
hierarchy. In the present context we can guaran-
tee, keeping the hierarchy representation implicit to
each diamond, an easy top-down traversal of the hi-
erarchy but not an equally easy traversal bottom-
up. At least for the present results we have decided
to give easiness of implementation top priority al-
lowing for explicit hierarchy construction only dur-
ing the pre-processing step. We made such deci-
sion considering the complexity introduced by DT
in terms of memory occupancy and time complex-
ity when working with large amount of data. In DT
we store the least possible amount of information
(only center coordinates, 3 short for each center,
and pointers to sons, 8 short in the worst case for
each diamond), for hierarchy construction, due to
the regularity of the subdivision, DT can be easily
partitioned in blocks of smaller size. Each block
can be distributed to different processors each of
which can perform independently the error calcu-
lation. A good data-partitioning scheme can dis-
tribute evenly each block, leaving out from the er-
ror calculation only the block vertexes that by them-
selves correspond to the first levels of the hierarchy
tree DT, levels that can be easily traversed. The reg-
ularity of the subdivision mask applied and the or-
ganization of the information in Tables allow us at
run-time to keep everything implicit in the diamond
cells that require a very low footprint to be repre-
sented (3 short). To access data in the tables we
needs only the center coordinates of the diamond
we are interested in and it is performed in constant
time. The introduction of vertex-inheritance sup-
port causes an overhead in memory requirements
(HT data-structure). Nevertheless the introduced
overhead is worth compared to the gain in terms of
computational time saved. To be more specific the
memory requirements of HT is equal to: 3 short for
the center, 24 short for the shared vertexes, 8 short
for pointers to sons for a total of 70 bytes. This
70 bytes must be multiplied by the number m of
diamonds belonging to the level under refinement.

The average value of m depends on the level of sub-
division and the percentage of cells containing the
isosurface we are searching (around 10-20% of the
total). From the point of view of computational time
saved introducing this overhead we avoid to recal-
culate for each diamond all the isosurface vertexes it
contains limiting the computation to those vertexes
not in common/inherited from the fathers reducing
the operation of interpolation of a factor of 3. Each
diamond needs to recalculate only the isovertexes
laying on split or “new” edges introduced by the
subdivision peculiar to that level. Passing the inher-
ited vertexes from father to son can be done with
three operations each of unitary cost (O�1�). The
first operation consists, given a diamond of level l,
in locating exactly the position of each diamond son
in the l � 1 level of the hierarchy and put the fa-
ther’s values in the isovertex record local to the son
(operation of unitary cost because stored in HT).
The order in which the vertexes should be inher-
ited is known by construction (see figure 5). Re-
sults show (see Section 6) that, supporting inheri-
tance, the computational time needed for the isosur-
face extraction is reduced by a factor of 3. Each
operation of interpolation requires a constant num-
ber of arithmetic operations involving sum, subtrac-
tion, multiplication and division, for large datasets
the overall computational time saved it is shown to
be worth the overhead.

6 Results

Our algorithm has been implemented in C�� and
developed on both SGI and Windows platforms.
Results have been carried on on a PC on a Win-
dows 2000 Server platform,AMD Athlon processor,
528Kb RAM, NVIDIA GeForce2. We computed
the performance of the algorithm on two datasets:
Hipip and IdrogenAtom of sizes 643 and 1283 re-
spectively. Table 1 shows the time in seconds for
the pre-processing phase (tables filling, DT hierar-
chy construction procedures and object space error
measurement). Table 2 shows the time in seconds
for the Isosurface extraction for different values of
resolution required. Results obtained with introduc-
tion of inheritance support are compared to results
obtained with a “plain” version of the algorithm.
Fig. 6 and 7 show progressive refinement of Hipip
and IdrogenAtom obtained applying our algorithm
with the inheritance paradigm active.

666

Dataset Size Pre-proc. Time(sec.)
Hipip 643 3�9 secs
Hydrogen 1283 10�5 secs

Table 1: Computational time required for the pre-processing
phase of the algorithm. Performances computed over the HIPIP
dataset �643� and the IDROGEN-ATOM dataset �1283�.

Dataset Res. IsoSurf
Extr.

IsoSurf.
Extr.

w/Inh. w/o Inh.
60% 0�1 secs 0�3 secs.

Hipip
(643)

85% 0�4 secs 1�0 secs.

100% 0�9 secs 2�5 secs.
60% 0�4 secs 1�0 secs.

Hydrogen
(1283)

85% 1�5 secs 4�6 secs.

100% 3�9 secs 11�7 secs.

Table 2: Computational time required for the run-time phase
of the algorithm. Performances computed over the HIPIP dataset
�643� and the IDROGEN-ATOM dataset �1283�

7 Discussion and Future Work

In this paper we have introduced a progressive al-
gorithm and data structures for time-critical and
memory-critical isosurface extraction. Providing a
set of local rules for continuous geometric transi-
tions (geomorphs) of one level of resolution into the
next we keep the same advantages of a hierarchical
data structure without the overhead of keeping ex-
plicit the hierarchy structure. Our approach guar-
antees the generation of non-self intersecting sur-
faces while extracting adaptive levels of detail from
the multi-resolution surface representation keeping
at reasonable rate the proliferation of vertexes. Ex-
ploiting the subdivision scheme properties we can
guarantee optimal time performance in isosurface
extraction in spite of a minimal memory overhead
(inheritance support). Adopting a marching tetra-
hedra algorithm to perform isosurface extraction we
end up producing more triangles than well known
techniques as the one based on Marching Cubes
or Dual Contouring, our future effort will be the
development of a more efficient approach for ex-
tracting the contour. Nevertheless with respect to
current techniques the regularity of our scheme al-
lows us to easily handle the presence of sharp fea-
tures and to produce adaptive refinements without
needing special rules to handle cells connecting re-
gions at different resolution. Our approach is also
well suited for the design of an efficient run-time
data partitioning and distribution algorithm to re-
duce the local memory requirement and overwork

distributed environment potentiality currently only
approached. Our present work regards performance
testings of our paradigm to datasets of large size,
our future work will regard the application of our
technique in distributed environments and the de-
velopment of data-partitioning schemes optimal for
our framework.

References
[1] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and

R. Scopigno, Simplification of tetrahedral meshes with ac-
curate error evaluation, IEEE Vis. ’00, IEEE, Oct. 2000,
pp. 85–92.

[2] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and
K.I. Joy, Interactive view-dependent rendering of large Iso-
Surfaces, Proc. IEEE Vis. 2002 , IEEE, Oct. 27– Nov. 1
2002, pp. 475–484.

[3] Leif Kobbelt,
�

3 subdivision, Proc. of the Computer Graph-
ics Conf. 2000 (SIGGRAPH-00), ACMPress, July 23–28
2000, pp. 103–112.

[4] Y. Livnat and C. Hansen, View dependent isosurface extrac-
tion, IEEE Visu. ’98, IEEE, Oct. 1998, pp. 175–180.

[5] Y. Livnat, H. W. Shen, and C. R. Johnson, A near opti-
mal isosurface extraction algorithm for structured and un-
structured grids, IEEE Trans. on Visual Computer Graphics
(1996), no. 1, 73–84.

[6] W. E. Lorensen and H. E. Cline, Marching cubes: a high
resolution 3D surface construction algorithm, SIGGRAPH
’87 Conf. Proc., Computer Graphics, Volume 21, Number 4,
July 1987, pp. 163–170.

[7] V. Pascucci, C. L. Bajaj, and Daniel R. Schikore, Fast iso-
contouring for improved interactivity, 1996 Vol. Vis. Sym-
posium, IEEE, Oct. 1996, ISBN 0-89791-741-3, pp. 39–46.

[8] V. Pascucci and P. Lindstrom, Visualization of terrain made
easy, Proceedings Visualization 2001, IEEE, 2001.

[9] Valerio Pascucci, Slow growing subdivision (sgs) in any
dimension: Towards removing the curse of dimensional-
ity, EUROGRAPHICS 02 Conf. Proc., , EUROGRAPHICS,
Sept 2002, pp. 451–460.

[10] A. Plaza and G.F. Carey, About local refinement of tetrahe-
dral grids based on local bisection, 5th International Mesh-
ing Roundtable (1996), 123–136.

[11] M.-C. Rivara and C. Levin, A 3-d refinement algorithm suit-
able for adaptive and multi-grid techniques, Comm. in Appl.
Numer. Meth. (1992), 281–290.

[12] H. W. Shen and C. R. Johnson, Sweeping simplices: A fast
iso-surface extraction algorithm for unstructured grids, Vis.
’95 Proc. (1995), 143–150.

[13] Luiz Velho and Denis Zorin, 4–8 subdivision, Computer-
Aided Geometric Design (2001), no. 5, 397–427, Special
Issue on Subdivision Techniques.

[14] Jane Wilhelms and Allen Van Gelder, Octrees for faster iso-
surface generation, ACM TOG (1992), no. 3, 201–227.

666

Figure 6: Steps in a progressive isosurface computation from the volumetric IDROGEN-ATOM dataset, left to right.

Figure 7: Steps in a progressive isosurface computation from the volumetric HIPIP dataset, left to right.

666

	Text1: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

